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Abstract

The performance of materials such as steels, their high strength and formability, is based

on an impressive variety of competing mechanisms on the microscopic/atomic scale (e.g.,

dislocation gliding, solid solution hardening, mechanical twinning or structural phase trans-

formations). Whereas many of the currently available concepts to describe these mechanisms

are based on empirical and experimental data, it becomes more and more apparent that fur-

ther improvement of materials needs to be based on a more fundamental level. Recent

progress in the field of ab initio methods makes now the exploration of chemical trends,

the determination of parameters for phenomenological models, and the identification of new

routes for the optimization of steel properties feasible. A major challenge in applying these

methods to a true materials design is, however, the inclusion of temperature driven effects on

the desired properties. Therefore, a large range of computational tools has been developed

in order to improve the capability and accuracy of first-principles methods in determining

free energies. These combine electronic, vibrational, and magnetic effects as well as struc-

tural defects in an integrated approach. Based on these simulation tools, one is now able to

successfully predict mechanical and thermodynamic properties of metals with a hitherto not

achievable accuracy.

1 Introduction

1.1 Motivation

The fascinating world of materials design covers a large variety of physical quantities that need

to be optimized for special applications. In steel design the focus is very often on mechanical

properties, their strength and ductility. For the latter two quantities an inverse relation is often

observed visualized in Fig. 1: On the one hand, some ferritic steels allow huge elongations of

more than 50% before fracture, suffering however from a low ultimate tensile strength. On the

other hand, much higher strength levels can be obtained by, e.g., martensitic steels, but this

time at the expense of low accessible deformation rates. For many applications, in particular in

automotive industry, a combination of high ductility and high strength is highly desirable. For
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Figure 1: Overview of typical strength-ductility profiles of different types of steels, indicating

an inverse relation between these two properties. Advanced steels showing transition/twinning

induced plasticity (TRIP/TWIP) as well as novel concepts combining TRIP with the formation

of intermetallic nanoparticles in the martensite during aging are most promising for applications.

[1]

instance, steel sheets with a high ductility can be substantially deep drawn, which is necessary

to construct complicated car elements. If at the same time a high strength level in particular

for the deformed regions is ensured, the usage of thin steel sheets is possible. The consequence

is a significant reduction of production costs and material, being important in particular for

highly efficient, light-weight cars. Since the same material properties are also essential in case of

crashes, the safety of a car will increase simultaneously. These extraordinary properties should

go along with further constraints, such as good formability, excellent welding behaviour, and

resistance to embrittlement, which every steel needs to fulfil.

The engineering task of exploring the materials landscape for such property combinations is

also of high interest for natural scientists, since novel ways of materials design, rooted in fun-

damental scientific principles, are nowadays developed and employed to achieve the goal. All

currently promising approaches try to design steels such that certain micro-structural elements

and/or deformation mechanisms occur intentionally. Many of them are closely related to the

thermodynamic (meta)stability of certain phases. Knowing the complex phase diagrams of these

materials, certain annealing procedures can be designed to ensure the predominant occurrence

of, e.g., martensite, austenite, or bainite. The solubility of alloying elements can lead to solid-

solution hardening. Non-metallic inclusions such as carbides, nitrides, and oxides can in the

form of precipitates significantly hinder the motion of dislocations, provided their formation is

thermodynamically and/or kinetically feasible. The complexity of the involved phase diagrams

becomes apparent by noting that already elementary iron can be observed in at least five dif-

ferent solid phases, including the ferritic (α, bcc), the austenitic (γ, fcc), and the ε phase (hcp),

the latter being (meta)stable at (ambient) high pressures. All other alloying elements (a steel
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is typically a system of more than 10 components) even lead to a substantial increase of the

number of relevant structural as well as magnetic phases.

A potential approach to overcome the inverse strength-ductility relationship is the adoptive

change of micro-structure in regions where the highest deformation rates occur. One of these

mechanisms is the transition induced plasticity (TRIP), describing a local martensitic trans-

formation of an austenitic (fcc) steel into a martensitic phase (hcp or bct). Another one is

twinning induced plasticity (TWIP), resulting in the formation of Σ3[110](111) twin boundaries

in an austenitic phase. Both processes allow large elongations without losing local strength by

introducing stacking faults into the system. Therefore, the stacking fault energy (SFE), which

can be related to the Gibbs free energies of the fcc and hcp phase of the steel, is typically used

to predict their occurrence.

Most of the above mentioned properties can only be understood, if the processes on the atomic

scale are fully taken into account. While empirical potentials are of importance in exploring

possible physical mechanisms, they are not (yet) sufficient to yield a true predictive power for

the complex processes in steels. This fact is mainly due to the occurrence of structures, not

included in the fit of the potentials, due to the large variety of the involved elements and the

complex magnetic degrees of freedom present in steels. Therefore, ab initio methods and most

prominently density functional theory (DFT) seem to be best suited for state-of-the-art materials

design.

There are however important challenges connected with such an approach that need to be

carefully addressed. On the one hand, DFT is well known to be particularly suitable for ground

state properties of materials. A ground state analysis is however not sufficient for steels which

are processed at/for temperatures ranging from room temperature up to the melting point.

An extension to finite temperatures is particularly evident for the presently hot topic of high-

temperature applications as, e.g., urgently needed for next generation power plants.

On the other hand, current knowledge indicates that extreme demands with respect to the pre-

cision and accuracy of the methods need to be satisfied, in order to make truly profitable pre-

dictions in the field. It is for instance known from DFT calculations that magnetic phases of fcc

iron while differing by only a few meV/atom can still significantly influence for example vacancy

and other defect formation energies. calphad assessments, an established phenomenological

technique to construct phase diagrams from calorimetric measurements, predict the energy dif-

ference between fcc and bcc iron in the stability range of γ iron to be systematically below 1

meV/atom [2]. Further, it is empirically known that changes of the SFE by less than 10 mJ/m2

can have a noticeable influence on the kind of deformation mechanism (TRIP vs. TWIP) be-

coming active in austenitic steels [3, 4]. These accuracy demands distinguish steels from many

other material classes such as oxides, conventional semiconductors, etc., where typical energy

differences are in the order of 100 meV.

The aim of this article is to review the ab initio techniques currently available for predicting

thermodynamic properties of materials and steels. Special care will be taken in covering the

complete set of relevant excitation mechanisms at finite temperatures including - besides the

“standard” vibrational and electronic excitations - in particular those related to the magnetic

degrees of freedom. The achievable precision and the predictive power of these methods will
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be discussed. Based on selected examples, distinguished success stories contributing to a true

understanding of materials behaviour will be provided.

1.2 Established approaches of ab initio thermodynamics

The prediction of the thermodynamic stability of phases as a function of temperature and

chemical composition is already for several decades a key task of the calphad (abbr. for

“Calculation of phase diagrams”) community [5]. The tremendous success of this approach

is due to sophisticated interpolation schemes, which allow the prediction of multi-component

material systems based almost exclusively on input for unary, binary and ternary phases. A

fundamental difficulty related to the typical calphad approach is however the fact that it

requires experimental input. Providing sufficient experimental data is often challenging and

accompanied by expensive sample preparation and the necessity of high precision measurements.

Further, from a principle point of view, some necessary input (e.g., energetics of metastable or

even unstable phases) is missing due to the lack of corresponding samples.

The ab initio approach constitutes therefore a very promising possibility to explore experimen-

tally inaccessible phase space regions and to evaluate existing experimental data [6]. It also

provides a reference to evaluate the physical concepts that enter the interpolation formulas used

in calphad (e.g., with respect to stacking fault energies or magnetism).

There are already numerous examples in the literature [7, 8, 9, 10, 11, 12] where ab initio

results have been used as an input for calphad assessments. However, in almost all cases this

combination is restricted to T=0 K values on the ab initio side and predominantly focusing on

formation enthalpies of different phases. The restriction to T=0 K is not surprising recalling

the ground state character of DFT. Knowing on the other hand that “standard” calphad

assessments fail to describe the temperature regime below 200 K due to missing experimental

data, a fundamental gap between the two approaches becomes apparent. An extension of the

ab initio approaches to finite temperatures is in this light a critical step towards a complete and

fully predictive coupling between ab initio and calphad. Specifically, this requires accurate

yet numerically efficient theoretical approaches to compute all relevant free energy contributions

such as harmonic and anharmonic atomic vibrations, electronic and magnetic excitations, or

due to intrinsic point defects.

Some concepts for including finite temperatures into the ab initio description are already for

quite some time on the market. One of these concepts addresses the inclusion of electronic

degrees of freedom: In 1965 the “standard” T=0 K ground state DFT of Hohenberg and Kohn

was extended to include electronic excitations within finite temperature DFT [13]. The method

yields in principle (i.e., given the true exchange-correlation (xc) functional) the exact minimum

of the full free energy surface. It is in this sense still a ground state approach, referring now,

however, to the thermodynamic ground state at some given temperature rather than the T=0 K

ground state. As a consequence, single particle (electron) excitations cannot be resolved within

finite temperature DFT, but enter the electronic free energy in an averaged way. Furthermore,

the fact that we do not know the exact xc-functional but have to rely on approximations also

affects the accuracy with which we can compute this free energy contribution. Nonetheless,

for weakly correlated materials this combination provides a straight forward and remarkably

25



accurate access to the electronic excitation processes and derived thermodynamic properties.

For alloys and solid solutions, which are often characterized by chemical disorder, i.e., disorder of

the atomic species, highly advanced methods to treat configurational entropy are available. The

thermodynamics of the disorder can be captured, e.g., with cluster variational methods [14] or

Monte Carlo simulations based on cluster expansions [15]. Within the latter approach ab initio

results of numerous crystal structures are used to parametrize a Hamiltonian, which mimics all

kinds of atomic interactions. Cross-validation schemes are the key to check the numerical error

related to the truncation of the Hamiltonian and to provide converged results. This approach has

been extensively and highly successfully applied to predict binary and ternary phase diagrams

and to study the formation of nano-sized precipitates.

Even the inclusion of lattice vibrations, yielding the largest entropy for pure or well ordered sys-

tems, is by now well established. Phonon calculations are most often performed in a harmonic

approximation, using either supercell calculations where forces obtained from the Hellmann-

Feynman [16, 17] theorem directly enter the dynamical matrix, or perturbative approaches in

reciprocal space using linear response theory [18]. For complex systems both approaches yield

phonon spectra of comparable precision and computational effort, two aspects which will be

discussed in more detail in Sec. 2.1. Having obtained the phonon excitation energies, thermo-

dynamic potentials like the Helmholtz free energy become directly accessible using statistical

concepts:

F qh(V, T ) =
1

3N

3N−3
∑

i

{

1

2
~ωi(V ) + kBT ln

[

1 − e−~ωi(V )/kBT
]

}

. (1)

Here, N is the number of atoms in the supercell, ωi are the phonon frequencies for each degree

of freedom, kB is the Boltzmann constant, ~ is the reduced Planck constant, V is the volume,

and T the temperature.

In the next section we will give a brief overview on some recent methodological developments

and advances to study further free energy contributions by DFT.

2 Recent methodological developments

One reason for the difficulties associated with thermodynamic ab initio predictions for steels is

their complexity, both with respect to the involved phases and the relevant excitation mech-

anisms. In this article, we approach this challenge step by step. We first consider individual

phases. Our primary focus is here on the fcc phase, which is of great relevance particularly

for modern high-strength and stainless steels. Furthermore, we refrain in the first part from

including configurational or magnetic degrees of freedom. Therefore, only non-magnetic, pure

elements in the fcc structure will be considered. These conditions will be released as we proceed

further.

2.1 Vibrational entropy beyond the harmonic approximation

As mentioned in the previous section, ab initio calculations of phonons in the harmonic ap-

proximation can nowadays be considered as a well established technique. However, to achieve
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Figure 2: State-of-the-art performance of a DFT based quasiharmonic approximation to obtain

phonon energies of non-mangnetic unary fcc metals. The legend shows the equilibrium lattice

constant corresponding to the temperatures at which the dispersion was obtained and TRT

indicates room temperature. The calculations have been done using the VASP package [19] in

combination with the provided PAW potentials [20]. The figure has been adapted from Ref. [21].

a precision in phonon energies sufficient for a reliable prediction of free energies, several crucial

details have to be considered. Figure 2 shows the presently achievable accuracy when computing

phonons using widely used xc-functionals (LDA, GGA-PBE) for a large set of non-magnetic fcc

metals.

To achieve a fair comparison of the theoretical results with experiment, as done in Fig. 2,

one needs to carefully revisit the origin of the corresponding data. Since experimental phonon

measurements, usually obtained by neutron scattering experiments, are performed at finite tem-

peratures, the temperature dependence of phonons needs also to be included in the theoretical

calculations. In most practical cases the largest contribution arises from quasiharmonicity, as

can be seen for the example for aluminium in Fig. 3. In this approximation the full volume

dependence of the free energy surface is considered and all phonon calculations are performed

for the lattice constant belonging to the respective temperature.

As shown in Fig. 3 the quasiharmonic approach does not cover the full anharmonicity of the

problem. The interaction of phonons with other phonons (explicit anharmonicity), but also

the coupling with other excitation mechanisms (e.g., with electronic or magnetic degrees of

freedom) can lead not only to a broadening of the phonon peaks, but also to a shift of their
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Figure 3: Influence of temperature on phonons. a) Phonon dispersion of aluminium at 80 K as in

Fig. 2. b) Comparison between the various temperature dependencies of the phonon frequency

at the LL point (indicated by a red arrow in a)): the explicitly anharmonic (ah) shift (see text),

the shift due to electronic (el) excitations, and the shift due to quasiharmonicity (qh), i.e.,

influence of thermal expansion [22].

maxima. Whereas explicit anharmonicities usually impact thermodynamic data particularly at

high temperatures, the influence of non-adiabatic interactions is very much system dependent.

A few examples of this currently intensively investigated topic [23] will be mentioned below,

several others can be found in the literature, e.g. [24].

In order to ensure a high numerical precision when computing the various free energy contribu-

tions, great care needs to be taken to sufficiently converge the results. Since a large number of

parameters needs to be optimized, efficient scaling procedures can be applied for this purpose

[21]. Some of the most important aspects for phonon calculations are:

• For some elements (e.g., Cu) the grid size of the augmentation charges needs to be increased

well beyond standard values in order to obtain a convergence of the Grüneisen parameter

to less than 1%.

• For some elements (e.g., Al) extraordinary high k-point meshes for the electronic inte-

gration are necessary. Inappropriate k-point meshes can even yield unphysical imaginary

phonons in the vicinity of the Γ point.

• In the direct force-constant method the supercell size is a critical parameter. In order

to resolve the phonon dispersion with sufficiently high precision (e.g., Pb) or to identify

small (Kohn) anomalies in the phonon spectra (e.g., Pt), the supercell size needs to be

sufficiently large.

A high precision enforced in the phonon calculations allows us to unambiguously assign the

remaining errors to (i) missing free energy contributions such as non-adiabatic contributions

mentioned before and (ii) the xc-functionals providing unique information regarding sources

of their failing. Figure 2 shows that LDA overestimates the experimental data in most cases,

while GGA underestimates it. This behaviour is surprisingly systematic [21] and consistent with

the performance of these functionals already at T=0 K (see Fig. 4): The overbinding of LDA

and the corresponding too small lattice constant leads to a prediction of a stiffer material with
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bulk moduli. The results for the three different exchange-correlation functionals LDA, GGA-

PBE, and GGA-PBEsol are shown in blue, orange, and green, respectively.

a bulk modulus which is too large as compared to experiments. The opposite correlation is

observed for GGA. The situation cannot simply be resolved by using the experimental value

for the lattice constant, since this results into an artificial inner pressure of the system. Even

if the same (experimental) lattice constant is used for both xc-functionals, the corresponding

difference in phonon energies remains almost the same and only their order is reversed, i.e.,

LDA/GGA under/overestimates the experimental phonons, respectively. The only way out of

this dilemma is the development of improved xc-functionals. As can be seen in Fig. 4, PBEsol

[25] is significantly reducing the over-/underbinding of LDA/GGA for non-magnetic metals.

Since PBEsol, however, does not improve the description of magnetic materials, which are the

main objective of this paper, we will not consider this xc-functional in upcoming discussions.

The systematic behaviour of the xc-functionals becomes even more apparent in the heat capac-

ities. They are obtained from a second derivative of the free energy (calculated with Eq. (1)),

which is most often the target quantity for materials research. The heat capacity, however,

provides a more sensitive response to even tiny errors in the free energy. We learn from Fig. 5

that the consideration of more than one functional yields an ab initio confidence interval in

the following sense: Whenever the derived thermodynamic quantities are largely independent of

the chosen xc-functional, a high predictive power, i.e. agreement with (unknown) experiments,

can be expected. If, however, a large deviation between LDA and GGA is observed, one has

to assume theoretical error bars of approximately the same order of magnitude. This observa-

tion does not significantly change, if instead of the self-consistent lattice parameters, the lattice

constant for both xc-functionals is fixed to the experimental values.

The large amount of chemical elements considered here, allows to derive chemical trends for

the accuracy of the DFT computed thermodynamic data. We first note that with the filling of

the d-shells (from left to right in Fig. 5) the deviation from the experiments becomes larger.

Furthermore, an increase of the size of the considered atoms (from top down in Fig. 5) gives

also a larger scatter in the theoretical data. In particular for the noble metals Ag and Au, we
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attribute this effect to Van de Waals interactions, not considered in our approach.
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Figure 5: Isobaric heat capacity CP as a function of temperature T for a variety of fcc metals, as

obtained from a quasiharmonic approximation using only DFT results as input. The contribution

due to electronic excitations Cel
P as well as the constant volume heat capacity CV are also

included. The results are obtained at P=0Pa and are provided in units of the Boltzmann

constant kB. The temperature axis is split by the vertical dotted line into two parts to allow a

convenient representation. The melting temperature is indicated for each element by the vertical

dashed line. The experimental data are taken from Ref. [26].

The results shown in Fig. 5 contain in addition to the lattice vibrations also contributions due

to electronic excitations. The relevance of this entropy contribution depends strongly on the

specific chemical element. The electronic entropy contribution is particularly large for transition

metals with an almost half filled d-shell. For example, fcc Rh shows a prominent peak in the

density of states close to the Fermi energy, which only at finite temperatures becomes partially

occupied.

Since the electronic contribution to the heat capacity is surprisingly large for elements such as

Rh, the question immediately occurs, what the effect of a finite electronic temperature on the

phonon energies is. This effect has systematically been studied in Ref. [22] and the result for

Al is shown in Fig. 3. The resulting corrections for the heat capacity, shown in Fig. 6, are even

for Rh one order of magnitude smaller than the electronic correction itself, and therefore in

most cases expected to be not significant in computing thermodynamic properties relevant for

materials design.
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2.2 Explicit anharmonicity

Explicit anharmonicity, while on an absolute scale significantly smaller than the quasiharmonic

contribution, often dramatically changes around phase transitions, e.g., close to the melting tem-

perature or to martensitic transitions. In contrast to the quasiharmonic free energy contribution

described above very few ab initio studies to compute anharmonic free energy contributions of

metals and metallic alloys have been reported so far. This is largely related to the fact that

an accurate determination of anharmonicity requires a well converged sampling of the full 3N -

dimensional configuration space (with N the number of atoms in a supercell) whereas for the

harmonic contribution at most 3N configurations need to be sampled. The number of config-

urations can be reduced even further when considering single crystals where translational and

point group symmetries can be employed.

To address the above challenge of sampling a high dimensional configuration space various

approaches have been proposed. These approaches can be divided into three major classes: (i)

Explicit calculation of third and fourth order force constant tensors, (ii) molecular dynamics in

connection with temperature integration, and (iii) adiabatic coupling approaches calculating only

the difference between a reference system, where the free energy can be easily computed, and the

actual system. Each of these approaches has its pros and cons. While (i) is a natural extension

of the dynamical matrix, it becomes highly memory and time consuming for low symmetry

structures such as disordered metallic alloys. Using empirical potentials, approach (ii) has been

employed to compute the anharmonicity of metals, e.g., [27]. However, to obtain a statistical

convergence of ≈ 1 meV in the free energy about 106 . . . 107 atomic configurations have to be

computed making this approach infeasible for DFT calculations. Approaches based on (iii) rely

on reference systems where the free energy can be analytically computed (e.g., in the harmonic

approximation, see Sec. 1.2) and for which the energy difference between the full and the reference

free energy surface is close to a constant. Using efficient adiabatic connection schemes such as

thermodynamic integration the number of configurations can be reduced by a factor of 102 . . . 103.
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This approach has been successfully employed to determine, e.g., the solid/liquid phase transition

of iron (at extreme pressures) by computing the free energy difference between the solid and

liquid state using DFT [28].

While thermodynamic integration substantially reduces the number of configurations needed to

sample the 3N configuration space the targeted accuracy of 1 meV requires convergence param-

eters which make the sampling of 104 configurations for a single free energy point infeasible.

By systematically studying the performance of the various approaches it is possible to design a

multi-step approach [29] that provides the targeted accuracy within a few 100 steps only, i.e.,

providing a speed up compared to thermodynamic integration of 100 and to conventional MD of

more than 10000. The approach is based on the observation that the extreme high convergence

parameters in k-point sampling and energy cut-off are mainly needed to converge the kinetic

electronic energy, while the charge density is well described already at significantly reduced con-

vergence parameters. Thus, increasing convergence gives rise to a substantial volume dependent

shift in the energies but affects the forces and thus the shape of the potential energy surface only

little. As a consequence we observe that energy differences between medium and high converged

calculations for identical configurations are almost constant. This is shown by the red line in

Fig. 7c.

This insight allows, as mentioned above, to efficiently coarse grain configuration space without

having to sacrifice accuracy. In a first step, starting from a harmonic reference potential energy

surface (PES)

Eref =
∑

i,j

uiDi,juj, (2)

with the dynamical matrix D, displacements ui = Ri − R0

i
and R0

i
the T=0 K equilibrium

position, a thermodynamic integration for medium convergence parameters is performed. For
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this subsequent MD runs on the PES

Eλ = Eref + λ ·
(

EDFT − Eref
)

(3)

are performed with λ an adiabatic coupling parameter going from 0 to 1. A critical aspect to

achieve maximum efficiency in these calculations is the choice of the thermostat and of the initial

conditions (coordinates and velocities at time t=0). Rather than using the conventionally often

employed Nose-Hoover thermostat we use Langevin dynamics. Particularly for small λ values,

where the PES is close to the harmonic regime phonon-phonon interactions are weak resulting in

huge equilibration times when using conventional thermostats. In contrast, Langevin dynamics

rapidly equilibrates even in a fully harmonic potential making it an optimum choice in connection

with thermodynamic integration. As initial configurations snapshots of equilibrated MD runs

on the reference PES, Eq. (2), are used. Based on these choices 10 equally spaced λ values and

1000 MD steps (i.e. a total of 10000 configurations) provide a statistical convergence of better

than 1 meV.

In a second step we collect from each λ trajectory 30-50 uncorrelated configurations and perform

for these structures DFT calculations with the highest convergence. As shown in Fig. 7b the

small number of steps is sufficient to guarantee the targeted accuracy. Based on the key ingre-

dients which guarantee the high efficiency this approach has been named UP-TILD (upsampled

thermodynamic integration using Langevin dynamics).

A major advantage of the UP-TILD approach is that it provides an optimal minimal set of

configurations that highly efficiently samples each of the PES given by Eq. (3). The compact

notation of the high dimensional configuration space easily allows to bridge not only medium

with high converged DFT calculations but also different ab initio approaches. We have used it,

e.g., to construct minimal sets in a pseudo-potential approach and transferred it to all electron

calculations employing WIEN2k [31] to eliminate potential inaccuracies due to the pseudo-

potentials. This ensures that indeed only the xc functional remains as only non-controllable

parameters that defies the targeted 1 meV accuracy. Since only configurations but no forces

are needed for the upscaling advanced electronic structure methods going beyond DFT such as

quantum Monte Carlo (QMC) can be easily employed.

2.3 Free energy contribution due to point defects

Among all possible defects occurring in technical metallic alloys such as dislocations, grain

boundaries, voids, etc. only point defects have a sizeable configurational entropy and may thus

contribute to the free energy. The free energy due to the formation of native point defects is a

sum of different contributions (e.g., vacancy, interstitial, anti-site), where the equilibrium con-

centration of the specific defect is given by ci = c0 exp(−Fi/kBT ). Here, c0 is the concentration

of available sites where the specific defect can be formed. The key quantity to determine the free

energy contribution is the volume and temperature dependent formation free energy Fi. From

a DFT perspective there are two major challenges to compute this quantity:

1. Finite temperature contributions

2. Finite supercell size effects
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Let us first focus on the finite temperature aspect. The dominant contribution to Fi is the

zero temperature formation energy Ei, which can be nowadays obtained at modest computa-

tional cost. Despite the fact that Ei is the T=0 K formation energy it leads to temperature

dependent defect properties – such as concentrations – due to the temperature dependence of

the configurational defect entropy. However, for the targeted accuracy of 1 meV in the defect

related free energy contribution – similar as for bulk thermodynamic quantities – also second

order contributions such as electronic, quasiharmonic, and anharmonic excitations need to be

included. The loss of translational symmetry and the reduced point group symmetry induced

by point defects make a DFT calculation specifically of the quasiharmonic contribution much

more challenging.

In order to address these challenges and to push the accuracy and realism of the defect calcula-

tions numerous approaches have been developed in the past. In this respect, it is instructive to

look at the methodological developments over the last 25 years for the example of the dominant

point defect in metals – the vacancy (Tab. 1): Starting in the late 80’s with the seminal work

by Gillan [32], DFT based studies of point defects were limited to Ef . This situation persisted

roughly until the beginning of the new century, when studies [33, 34] of the electronic contribu-

tion to F f – which are as discussed in Sec. 2.1 of crucial importance for some metallic materials

– appeared. In 2000 and 2003, Carling et al. [35, 36] provided a first ab initio based assessment

of the quasiharmonic contribution to the vacancy of aluminum. To make such a study feasible

at that time, the authors had to restrict the dynamics of the system to the first shell around the

vacancy, i.e., to the atomic shell which experiences the largest effect as compared to the per-

fect bulk. An ab initio based evaluation of the anharmonic contribution was computationally

prohibitive at that time, which made it necessary to resort to empirical potentials.

Today, major methodological improvements and the boost in computer power provide the unique

opportunity to study all relevant free energy contributions of defect formation in a rigorous

ab initio manner (cf. Tab. 1). To actually perform such a study required developing and

implementing new concepts. For example, the fact that even small deviations in the treatment

of bulk and defect calculations lead to unacceptable errors in the targeted accuracy enforce great

care and specific modifications, e.g., in the quasiharmonic treatment [37].

To briefly discuss key aspects of some of the new approaches and to demonstrate their capabilities

we discuss in the following an exemplary point defect: The vacancy defect in bulk Al. For this

material systematic experimentally measured vacancy concentrations over a large temperature

range are available allowing a direct comparison with our DFT data.

To achieve the targeted accuracy in the free energy a correct treatment of strain induced finite

size effects due to periodic boundary conditions is crucial. Without these, errors of more than

one order of magnitude in the defect concentration are observed (see e.g., [29]). To eliminate

the artificial defect-defect interaction two major approaches are used: The constant pressure

approach [39] and the rescaled volume approach [32]. The approaches differ in how they ac-

count for the long-ranged elastic interactions. Recently, a volume optimized approach [29, 37]

has been developed which is more general and allows to derive the other two by well defined

approximations.
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Table 1: Representative ab initio studies of point defect calculations in unary metals for the

specific case of vacancies. The abbreviations are: 3d/4d/5d = respective transition elements,

xc = exchange-correlation functional, LDA = local density approximation, GGA = generalized

gradient approximation, PWps = planewaves with pseudopotentials, FP-LMTO = full potential

linearized muffin tin orbitals, PW-PAW = planewaves with projector augmented waves [38],

V = rescaled volume approach [32], P = constant pressure approach [39], volOpt = volume

optimized approach [37], F f = defect formation free energy, Ef = (T = 0K) contribution to F f ,

el/qh/ah = electronic/quasiharmonic/anharmonic contribution to F f , 1s = first shell (around

the defect) contribution to the dynamical matrix, emp = empirical potential approach.

Methodology Contributions to F f

Year Ref. Elements xc Potential Strain Ef el qh ah

1989 [32] Al LDA PWps V x

1991 [40] Li LDA PWps V x

1993 [41] Al,Cu,Ag,Rh LDA FP-LMTO V x

1995 [42] 3d,4d,5d LDA FP-LMTO V x

1997 [39] Al LDA PWps P x

1998 [33] W LDA PWps P x x

1999 [34] Ta LDA PWps P x x

2000 [35] Al LDA/GGA PWps P x x1s xemp

2003 [36] Al LDA/GGA PWps P x x1s xemp

2009 [43] Fe GGA PW-PAW V x x

2009 [29] Al LDA/GGA PWps/PW-PAW volOpt/P x x x x
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Figure 8: Equilibrium vacancy concentration at zero pressure of aluminium as a function of the

inverse temperature multiplied by the melting temperature Tm. Results for the rescaled volume

and constant pressure approach are shown. The volume optimized approach yields concentra-

tions which are identical to the constant pressure results on the shown scale. The electronic

contribution yields a negligible contribution (indicated by the parenthesis). The squares indi-

cate experimental values from Ref. [44] (differential dilatometry). The diamonds/circles indicate

experimental values from Ref. [45] (differential dilatometry/positron annihilation).

A main feature of the optimized volume approach is a concentration dependence of F f which

enters through the reduced (excess) volume induced by atomic relaxations around the defect

and which is not present in the two previous approaches. While the volume optimized approach

allows to naturally derive both, the constant volume and pressure approximation, extensive

tests showed that in relevant defect concentration ranges the extra term is small resulting in

defect formation energies almost identical to the constant pressure approach [37]. In contrast,

the approximations needed to derive the rescaled volume approach are more severe for realistic

supercell sizes and result in sizeable errors even for low defect concentrations (see also Fig. 8).

Figure 8 shows also that including all entropy contributions (excitation mechanisms) together

with a high control in numerical precision provides an amazing accuracy using conventional LDA

or GGA functionals. Similar like for other thermodynamic quantities we observe that LDA and

GGA provide approximate theoretical error bars with LDA/GGA giving an lower/upper bound

to the experimental data. While including the anharmonic contributions has little influence

on the absolute defect concentrations in the experimentally available temperature window a

more detailed analysis performed in [29] shows a large change: While neglecting the quasihar-

monic approximation results almost in a vanishing vibrational entropy (0.2 kB) including these

contributions gives an entropy of 2.2 kB very close to the experimentally derived one (2.4 kB).

The excellent agreement of DFT computed and actually observed defect concentrations indicates

that the associated free energy bulk contribution can be accurately predicted.

36



2.4 Magnetic entropy

For metallic alloys with strong local magnetic moments such as steels the above mentioned

contributions to the free energy are not sufficient for a complete description of thermodynamic

properties. One observes, e.g., in the heat capacity plot for bcc iron in Fig. 9 an enormous

discrepancy between the calorimetric measurements (open circles) and ab initio results that

consider only vibrational and electronic entropy contributions (orange line). The latter agrees

with the experimental data only up to room temperature, which is also found in Ref. [46]. At

higher temperatures, however, it cannot account for the rapid increase in the experimental heat

capacity, having its maximum at the Curie temperature. This discrepancy has its origin already

in the free energy when including only F vib + F el, showing an increasing deviation from the full

calphad values with temperature. For instance, at 1200 K, corresponding to the experimental

bcc to fcc transition temperature, the difference is 45 meV – too high for a reliable description

of thermodynamic properties of steels. It is, therefore, obvious that an accurate determination

of the free-energy contribution from magnetic excitations is crucial.

Currently the entropy due to magnetic excitations cannot directly be determined within DFT.

One approach is to use the GW approximation in order to solve the many-body problem of spin

excitation in the electronic system [47]. This approach, which accounts for the itinerant nature

of magnetism, has been particularly successful in simulating spectral properties such as magnon

dispersion and life times. However, due to its methodological and computational complexity

free energy calculations based on this approach have not been possible yet.

For iron and its alloys, the assumption of a localized magnetic model has often turned out

to work surprisingly well. Based on this assumption a description of the magnetic entropy is

typically obtained using a two step procedure. In a first step, the interaction of the localized

magnetic moments is captured by a magnetic model Hamiltonian, the parameters of which are

determined by DFT calculations. In a second step, the magnetic Hamiltonian is solved in order

to derive the desired thermodynamic potentials.

The most established magnetic Hamiltonian for bcc iron is the Heisenberg model:

H = −
∑

ij

JijSiSj. (4)

It is entirely determined by the spin quantum number S and the coefficients Jij , which describe

the magnetic exchange coupling between magnetic moments at atomic sites i and j. S is formally

connected to the local magnetic moment M0 by M0 = gµBS, with the Landé factor g ≈ 2 and

the Bohr magneton µB. For bcc iron, M0 is almost entirely determined by the strongly localized

3d electrons, resulting in S ≈ 1.1.

For extracting the magnetic exchange coefficients Jij, we find the frozen magnon approach [48]

in combination with employing the generalized Bloch theorem [49] to be highly efficient. In this

approach, the DFT energy difference between spin spirals is calculated in reciprocal space. A

major advantage of this approach as compared, e.g., to a derivation of Jij from ordered magnetic

configurations, is that it naturally accounts for non-collinear spins and long-range interactions.

Not only are spin spirals with q vectors close to the Γ point due to their low energy most

relevant for the thermodynamics. They are also most consistent with the assumption of a fixed
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Figure 9: Heat capacity vs temperature of bcc Fe. The results of various theoretical methods

(MF, RPA, cMC and rMC) explained in the text are shown. The experimental data (open

circles) are taken from Refs. [51, 52] and the experimental transition temperature (bcc → fcc)

Tαγ ≈ 1184 K is indicated by a dashed line. All cMC and QMC calculations were performed

using the ALPS code [53].

spin quantum numbers S throughout the calculations. It is therefore not surprising that an

almost perfect agreement of the calculated magnon spectra with low-lying experimental data

(below the onset of Stoner excitations) is observed [50].

In the past various approaches to solve the Heisenberg model at finite temperatures have been

developed. These can be roughly divided in the following categories: (i) analytic and (ii) nu-

merical approaches. Another major distinction is with respect to treating spin, i.e. whether

spin quantization is taken into account or whether the spin degrees are assumed to be classical

continuous variables. Since the critical magnetic temperature of many magnetic metals such

as, e.g., Fe, Ni, Co is well above room temperature spin quantization effects are commonly

assumed to be negligible. Fig. 9 provides a first overview about the performance of the var-

ious approaches. Let us first focus on the analytical approaches where the inclusion of spin

quantization is straightforward. The methodologically most approximate approach, the simple

mean-field (MF) solution, does little to improve the heat capacity [50]. Higher order correla-

tion functions can be included using the random phase approximation (RPA) [54]. Including

these effects allows not only an almost perfect prediction of the Curie temperature, but also of

the heat capacity up to the critical temperature [50]. However, above the Curie temperature

by construction the method yields a vanishing magnetic entropy, i.e., the effect of local order

cannot be captured.

To include local order effects in the paramagnetic temperature regime Monte-Carlo approaches

are the method of choice. Neglecting spin-quantization effects, efficient classical Monte-Carlo

(cMC) techniques can be used to solve the Heisenberg model numerically exact. As can be seen

in Fig. 9 using this approach provides a correct description of the short range order effects in the

paramagnetic region, i.e., a largely improved description above TC . For temperatures below TC ,
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however, even qualitative changes are observed (e.g., the incorrect scaling at T=0 K) making

this approach unsuitable for a thermodynamic description over the entire temperature regime.

The good agreement between the approximate analytical solutions (which fully include spin

quantization) and experiment clearly indicate that spin quantum effects are critical and need to

be included. To include spin quantization, the proper approach would be spin quantum Monte

Carlo (QMC) [55, 56]. It provides a numerically exact solution of the quantum-mechanical

Heisenberg model. While this approach has been highly popular and successful solving a wide

range of model spin Hamiltonians, an application on actual magnetic metals turns out to be not

feasible with the presently available numerical implementations. The reason is that the present

implementations suffer from the so-called (negative) sign problem [57, 58], which results in an

exponential increase of the statistical error if magnetic frustration is present. Since realistic

metals are characterized by long-ranged oscillatory, i.e., positive as well as negative exchange

integrals, giving rise to magnetic frustrated configurations in the statistical ensemble, a complete

QMC solution of Eq. (4) is not feasible. For example, to obtain the desired accuracy for bcc

iron magnetic interactions for more than 20 neighbour shells had to be included. The above

discussion implies a severe discrepancy between the methods in principle needed to describe

finite temperature magnetism and the magnetic interactions of actual materials. To resolve this

discrepancy we systematically explored a wide range of pragmatic yet well defined approaches

to make QMC applicable for magnetism in real metals. In the following two approaches will be

discussed. To introduce the first one, we analyse the ratio between classical and quantum MC

calculations of the heat capacity:

f(t, S, σ) := CQMC
V (t, S, σ)/CQMC

V (t, S, σ). (5)

Here, σ labels the specific magnetic configuration, and t = T/TC is the normalized tempera-

ture. Choosing an extensive set of lattice structures (sc, bcc, and fcc) with nearest and second

nearest-neighbour ferromagnetic (J > 0) as well as anti-ferromagnetic configurations (J < 0) a

remarkable insensitivity of the scaling relation Eq. (5) with respect to the specific configuration,

i.e., the choice of lattice or the interaction parameters is observed [59]. An example is shown in

Fig. 10 for two different spins, S = 1 and S = 7/2. For high temperatures, where the quantum

and classical solution should coincide, f(t ≫ 1) → 1, the data is noisy due to CV (t ≫ 1) → 0

and the connected increase in the statistical errors. However, for the more important regime

below t = 1, i.e., the regime where classical MC fails, the influence of σ on the scaling relation

f is weak as discussed above and significantly smaller as compared to that of S and t.

The (approximate) independence of the scaling relation on crystallographic structure and mag-

netic interactions provides an elegant and direct way to combine the advantages of classical and

quantum MC without being restricted by their respective limitations: Using the known scaling

relation the magnetic Hamiltonian can be solved numerically exact for long range and oscillat-

ing magnetic interactions of realistic metals and transferred to their respective (approximate)

quantum-mechanical result. For practical reasons it is convenient to parametrize f(t, S, σ) by

the function:

f̄(t, S) :=

(

2tS/t

exp(tS/t) − exp(−tS/t)

)2

. (6)

The choice of this analytical function is motivated by limiting cases for t [59]. Interestingly, the

only free parameter tS in this function shows a linear dependence on the spin quantum number S
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Figure 10: Numerically evaluated ratio of the heat capacity obtained from classical vs. quantum

MC simulations, f(t, S, σ) as a function of reduced temperature for two spins S=1 and S=7/2

and various lattice/magnetic configurations σ. The figures have been adopted from Ref. [59].

(see Fig. 10b)), which underlines together with the weak σ dependence in Fig. 10a the universal

character of this behaviour.

With this insight, a fully quantum-mechanical treatment of bcc iron becomes accessible: Using

the complete set of previously determined exchange integrals, the magnetic part of the heat

capacity has first be determined within a classical MC simulation. Subsequently, Eqs. (5) and

(6) have been used to obtain the quantum-mechanical correction. The result is plotted in Fig. 9,

showing a remarkable agreement with experimental heat capacity data, both below and above

the paramagnetic transition temperature.

The finding of an universal scaling relation was also the main motivation for a second approach to

compute magnetic free energies with QMC [60]. Here one makes use of the observation that the

specific magnetic configuration, i.e., the number of interaction shells and the magnetic order, has

only a weak influence on the shape of Cp. Thus, rather than using the full, i.e. magnetically long

range Hamiltonian, any Hamiltonian reproducing the shape and critical magnetic temperature

of the heat capacity can be used. In case of a ferromagnetic solution, the numerically most

efficient one is an effective nearest-neighbour spin Hamiltonian, which, however, keeps the crystal

structure and spin quantum number of the investigated material. This construction guarantees

that the negative sign problem does not occur. The effective exchange integral is then determined

by the critical magnetic temperature, TC , which remains to be the only input needed for this

approach. It can be obtained from the full magnetic Hamiltonian using RPA, classical MC, or

experimental measurements. [50, 61, 59]

The quality of the approach can best be seen, when deriving the magnetization curves for often-

studied magnetic benchmark systems (Fe, Co, and Ni). Figure 11 reveals an excellent agreement

with the highly accurate experimental data available for these materials. As indicated in the

figure, the quantum-mechanical corrections as compared to a cMC simulation are essential and

well captured by the nearest-neighbour QMC approach suggested here. One should also note

that recently the calculation of magnetic properties of Fe and Ni with dynamical mean field

theory (DMFT) became possible and provided a similarly good agreement with experiment [62].

The numerical effort behind these methods is, however, much higher. It is also important to
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Figure 11: Reduzed magnetization M(t)/M0 for the unary ferromagnetic materials Fe, Co, and

Ni, using the effective nearest-neighbour model. The results are compared with cMC and DMFT

[62] calculations.

note that recently different extensions of classical Heisenberg-like Hamiltonians, which account

for longitudinal spin fluctuations (giving raise to a temperature dependence of the effective local

magnetic moments), have been proposed and successively applied [63, 64].

3 Heat capacities of selected material systems

While the theoretical approaches outlined in the previous section allow principally to study any

thermodynamic quantity, e.g., free energies, enthalpies, entropies, thermal expansion coefficients,

isobaric and isochoric heat capacities, and have indeed been used to do it (see e.g., Refs. [21, 29]),

we will focus in the following on the isobaric heat capacity. This is the key quantity obtained

from calorimetric measurements and one of the cornerstones of constructing thermodynamic

phase diagrams. Similar like in the previous section we will first focus on non-magnetic metals

and then include magnetic effects.

3.1 Importance of anharmonic contributions at extreme temperatures: A

case study for Al

While a thermodynamic description of metals using the quasiharmonic approximation together

with electronic excitations is by now a routine approach little has been known regarding the

relevance of point defects and anharmonicity. Both contributions are expected to become impor-

tant at extreme temperatures, i.e., at temperatures where the solid becomes less and less stable

against transformations in a new phase (martensitic transitions) or in the liquid phase. Indeed,

early speculations about the nature of the relevant excitation mechanism driving the structural

instability date back more than 90 years [65]. The methods outlined in Secs. 2.2 and 2.3 provide

for the first time the opportunity to study this question directly. Since calorimetric measure-

ments to determine the heat capacity are highly sensitive to sample preparation, measurement

geometry, sample holder etc. rather large errors result when comparing, e.g., to diffraction

techniques used to measure geometric quantities such as lattice constants, bond length etc.

For the following discussion we will therefore focus on fcc bulk Al, a metallic material that can

be produced with high chemical purity as single crystal and for which a large set of precise
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Figure 12: Isobaric heat capacity for aluminium. The figure shows (left) the two major contri-

butions from harmonic and quasiharmonic excitations and (right) a detailed comparison of the

remaining contributions coming from explicitly anharmonic vibrations (ah), vacancies (vac) and

electronic excitations (el).

experimental data is available. As shown in Fig. 5, already the quasiharmonic approximation

together with electronic entropy both LDA and GGA provide a remarkable agreement with the

experimental data. Similar as discussed before LDA and GGA provide approximate error bars

(bounds) to the experimental data, except when going to temperatures close to the melting

point. This behaviour indicates that close to the melting point excitation mechanisms beyond

quasiharmonicity and electronic excitations become relevant.

Computing the free energy contributions due to explicit anharmonicity and point defect cre-

ation a full analysis becomes possible (Fig. 12). Zooming into the contributions beyond the

quasiharmonic approximation (right side of Fig. 12) electronic and vacancy excitations yield the

anticipated positive contribution to the heat capacity. However, in contrast to previous belief the

explicitly anharmonic excitations show the opposite trend resulting in a negative contribution.

The reason is that a large part of anharmonicity is already contained in the quasiharmonic ap-

proximation, making the explicit part only a small (negative) contribution. Since the electronic

and the explicit anharmonic contribution largely cancel, the dominant contribution responsible

for the almost exponential increase of the heat capacity near the melting temperature is the

contribution due to defect formation.

To assess the accuracy of DFT in predicting key thermodynamic quantities such as the heat

capacity a comparison with the full experimental data sets, i.e., not the averaged ones usually

taken, is highly instructive. Fig. 13b shows that both LDA and GGA results agree well with

experiment up to ≈ 600 K, i.e. in a temperature region where the experimental scatter is small.

Above 600 K, there is a large scatter in the experimental data making a fair comparison with

theory difficult. A general trend is that almost all experiments performed later than 1950 (solid

squares in Fig. 13) show a steeper increase towards the melting temperature making the DFT

results a lower bound. This trend indicates that unintentional defects/impurities are in the

sample giving rise to additional excitation mechanisms [29]. It is interesting to note that theory

has reached here a level of accuracy which goes well beyond experimental error bars calling for

refined experimental strategies to measure this - for thermodynamic data critical - quantity with

higher precision. As mentioned before structural parameters such as lattice constants can be
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Figure 13: a) Thermal expansion coefficient and b) isobaric heat capacity of aluminium including

the electronic, quasiharmonic, anharmonic, and vacancy contribution compared to experiment.

The melting temperature Tm of Al (933 K) is given by the vertical dashed line. At Tm, the crosses

indicate the sum of all numerical errors (e.g., pseudo-potential error or statistical inaccuracy;

cf. Ref. [22]) in all contributions for GGA. The LDA error is of the same order of magnitude.

The figures are adopted from Ref. [29], where also the references for the experimental data can

be found.

measured with much higher precision and are therefore an ideal test bed to assess the accuracy

of our presently available xc-functionals. We have therefore also studied the thermal expansion

coefficient (Fig. 13a). As can be nicely seen including all free energy contributions provides an

amazing agreement with experiment up to the melting point. Even details close to the melting

temperature are correctly reproduced.

3.2 Cementite above the Curie temperature

Using the concepts explained in Sec. 2.4, thermodynamic properties can also be obtained for

magnetic materials. The effective nearest-neighbour approach in combination with vibrational
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Figure 14: Isobaric heat capacity for the unary ferromagnetic materials Fe, Co, and Ni, using

the effective nearest-neighbour model. The complete ab initio results including all free energy

contributions (red, solid lines), the result from the vibrational analysis only (dash-dotted lines)

and the results from a combined vibrational and electronic analysis (dashed lines) are shown.
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Figure 15: Calculated heat capacity of cementite in comparison with available experimental

data (open symbols) and thermodynamic assessments (filled symbols). The calculated elec-

tronic and magnetic contributions to the heat capacity are shown in shaded orange and grey

correspondingly.

and electronic excitations has successfully been applied to the unary ferromagnetic materials Fe,

Co, and Ni to obtain their magnetization curves (Sec. 2.4). The corresponding heat capacities

are shown in Fig. 14. The results for the heat capacity of Fe are almost identical to those

displayed in Fig. 9. The excellent agreement with the experimental data for Ni may appear

particularly surprising, since in contrast to Fe and Co, where the local magnetic moment re-

mains almost unaffected by the magnetic transition, the local magnetic moments of Ni are often

reported to drastically reduce [63]. An extension of the Heisenberg model such that longitudinal

fluctuations are considered appears therefore mandatory and has certainly a large influence on

magnetic quantities like the Curie temperature. The results for Ni, however, indicate that such

an extension does not affect the universality of the quantum-mechanical corrections of the heat

capacity used in the present approach.

Based on the excellent predictive power found for unary magnetic systems, the approach has been

extended and applied to technologically more relevant systems. A prominent example which we

will discuss in the following is that of cementite, Fe3C. This carbide is a key precipitate phase in

Fe-based materials and often introduced on purpose to strengthen the mechanical properties of

steels. In contrast to its technological importance its thermodynamic description, e.g., in various

calphad approaches, is very limited. For example, in the assessment of Gustafson from 1985

[2], which is the basis for well established databases, the heat capacity of cementite was treated

as a constant (see green, dashed line in Fig. 15), whereas experiments (black symbols) show a

much more complex behaviour. One reason for the rather pragmatic calphad treatment of Fe3C

might be the large scatter in the experimental data, which is mainly due to the lack of sufficiently

pure cementite samples and the unavoidable mixture with ferrite and other carbides. The scatter
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becomes particularly apparent in the temperature range above the Curie temperature (dotted

line in Fig. 15).

This case is typical for many material systems, and supplementing (assessing) experimental

datasets with results of first-principles calculations becomes particularly appealing. Correspond-

ingly, the methods described in this article have been employed for computing the vibrational,

electronic and magnetic free energy contribution of Fe3C.[66] The resulting heat capacity is

shown in Fig. 15 (red line). It reproduces the findings of some of the experiments remarkably

well, indicating at the same time clearly, which experiments are deviating from the expected

behaviour. In particular in the high-temperature limit a clear statement about the performance

of the various experimental datasets becomes possible, allowing a critical assessment and weight-

ing of the experimental data as needed in a thermodynamic assessment. These insights have

indeed been used by the calphad community for an improved description of the Fe-Mn-C phase

diagram by Hallstedt et al. [66].

4 Application to steel design

In the following we will briefly discuss a prominent example in actual steel design, for which an

accurate determination of thermodynamic quantities is crucial and can presently not be obtained

experimentally in the needed detail. As outlined in the introduction, modern high strength steels

are heavily relying on sophisticated mechanisms that are activated by deformations and/or

temperature and that require a careful control of the chemical composition. A critical quantity

for designing new steel grades based on these concepts is the determination of intrinsic stacking

fault energies (see Sec. 1.1). As mentioned before, small changes of the SFE, in the order of

a few mJ/m2, can be essential for the dominant deformation mechanism (TRIP vs. TWIP)

in the considered steels. Using the methods sketched in Sec. 2, changes (in particular due to

temperature) in this order of magnitude can now be resolved.

Essentially two different ab initio concepts are available for a determination of SFEs. On the

one hand, one can explicitly set up stacking faults in a supercell calculation, which is often

generalized to the complete energy surface (γ surface) of two half fcc crystals displaced along a

(111) plane with respect to each other. In this way, one additionally gets access to transition

paths and energy barriers relevant for the creation of stacking faults. An alternative approach

to obtain the intrinsic SFE is the axial next-nearest-neighbour Ising (ANNNI) model [67]. In

this approach, the energy of the crystal with a stacking fault is expanded into a sum of energies

of periodically repeated stacking sequences of (111) layers. It turns out that in first order of the

ANNNI model the SFE is proportional to the energy difference of the hcp and the fcc phase,

provided both phases have been evaluated at the same volume.

This knowledge reduces a complex materials design problem to the determination of free energies,

considered in this article. First ab initio studies using these concepts have mainly focused on

the prediction of chemical trends for the SFE of steels. Clearly, any attempt in this direction

needs to additionally include the chemical and paramagnetic disorder, which is relevant for high

temperatures. The coherent potential approximation (CPA) as well as the concept of special

quasi random structures (SQS) have turned out to be very suitable for this purpose. In particular
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the magnetic configuration and its temperature dependence turned out to be decisive for steels.

Taking care of this, it was for example possible to proof with ab initio methods an increase by

almost 30 mJ m−2 in the SFE of high-Mn steels due to the presence of 6 at.% Al [68].

For C, an interstitial alloying element which is present in practically all steels, the situation

turns out to be even more interesting: The assumption of a completely homogeneous C distri-

bution yields a drastic increase of the SFE also in this case. Consequently, there is a strong

thermodynamic driving force for C to move away from the region of the stacking fault. Since C

is an interstitial atom, an increase of the temperature by some 100 K can already be sufficient

for C to overcome the kinetic barriers and to reach thermodynamic equilibrium. As a result,

the SFE region will be free of C and the SFE becomes almost independent of the C contents in

the steel. Using this ab initio based insight, large discrepancies in experimental values for SFEs

have recently been resolved [69].

Nevertheless, temperature does not only play a role in terms of magnetic configurations or

kinetic barriers, also the explicit temperature dependence of the SFE turns out to be significant.

With the ANNNI model and its relation to the free energy of the fcc and hcp phase, this

temperature becomes directly accessible for ab initio methods when using the thermodynamic

methods discussed above. Using this approach we have recently shown that the SFE of iron

changes by more than 100 mJ/m2 over a temperature range of 1000 K [70]. This prediction is

highly relevant for the temperature ranges at which the TWIP effect can be expected.

Another important deformation mechanism in high-Mn steels, mentioned in the introduction, is

the TRIP effect. It is related to a martensitic phase transition, in this case caused by a mechan-

ical load. However, also temperature driven martensitic phase transitions are highly relevant for

the mechanical properties of materials. A prominent example are shape memory alloys (SMA),

such as NiTi. They make use of the fact that the martensitic phase, being stable below the tran-

sition temperature, has a lower symmetry than the austenitic phase. Therefore, any macroscopic

deformation of the material in the martensitic phase is easily possible by changing between dif-

ferent microscopic variants, whereas the heating to the austenitic phase will always ensure a

return of the original shape. In some magnetic SMA the transition can also be controlled by

magnetic fields, which is particularly attractive for applications with switching frequencies in

the kHz regime.

Having access to the free energies of all relevant steel phases, this kind of martensitic phase

transitions become accessible for ab initio methods. The concepts described in this article have,

e.g., recently been used to predict the sequence of phase transitions in the Heusler alloy Ni2MnGa

[23], including the existence of a pre-martensitic phase. Applying this approach made it not only

possible to resolve the delicate interplay between vibrational and magnetic degrees of freedom in

this material system, but also to make simulations about the change of the martensitic transition

temperature with the chemical composition. Since the transition temperature of Ni2MnGa is

with 200 K much too low for practical applications of the material, the observed increase of

the transition temperature, e.g., by replacing Mn partially by Ni is of great importance for the

production of devices.

Recently, also the investigations on Heusler structures became highly relevant for steel design.

In some novel steel concepts (maraging TRIP, see Fig. 1), a very high strength level is obtained
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by the formation of intermetallic nanoparticles in the martensite during aging. Modern experi-

mental techniques, such as atom probe tomography, have recently indicated that some of these

particles could, e.g., have the L21 structure of Ni2MnAl [71, 72]. The formation and relevance

of these precipitates is part of an ongoing research, combining state-of-the-art theoretical and

experimental techniques.

5 Conclusions and Outlook

A major aim of the present article is to show the status, the progress that has been made over the

last years but also the challenges we still face in using density functional theory which originally

has been developed as a T=0 K ground state methodology to compute thermodynamic properties

of real world materials with an accuracy needed for engineering and design. We purposely biased

our focus on metallic alloys with emphasize on steels since these materials are the basis for a

wide range of engineering applications. From a methodological point metals do not suffer from

the infamous bandgap problem of DFT, providing a sound basis for comparing the advanced

approaches developed for computing the various free energy contributions with experiment.

The possibility to analyse and identify chemical trends is a major advantage of ab initio ap-

proaches. In contrast to absolute quantities deficiencies due to the approximate nature of the

xc-functional become less relevant since only relative values need to be considered. This well

established finding can now be extended to thermodynamic properties. With the portfolio of

methods described in this article it becomes possible to address a wide variety of scientifically and

economically pressing issues in materials and steel design, which are related to finite temperature

thermodynamics. While a first major step has been done, further methodological developments

in particular with respect to the treatment of complex magnetic alloys, the consideration of

non-adiabatic interactions and the multi-scale connection towards micro-structural features are

still necessary.

Acknowledgments

Funding by the collaborative research center, SFB 761 “Stahl-ab initio”, of the Deutsche For-

schungsgemeinschaft and the Interdisciplinary Centre for Materials Simulation (ICAMS), which

is supported by ThyssenKrupp AG, Bayer MaterialScience AG, Salzgitter Mannesmann Forschung

GmbH, Robert Bosch GmbH, Benteler Stahl/Rohr GmbH, Bayer Technology Services GmbH

and the state of North-Rhine Westphalia, as well as the European Commission in the frame-

work of the European Regional Development Fund (ERDF) is gratefully acknowledged. Part

of this work was performed under the auspices of the U.S. Department of Energy by Lawrence

Livermore National Laboratory under Contract DE-AC52-07NA27344.

References

[1] D. Raabe, D. Ponge, O. Dmitrieva and B. Sander, Adv. Eng. Mater. 11, 547 (2009).

47



[2] A. Fernández Guillemet and P. Gustafson, High Temp. High Press. 16, 591 (1985).
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